By accurate quantum mechanical simulations, we show that typical diamond surfaces possess image states with sub-bandgap energies, and compromise the photostability of NV centers placed within a few nm of the surface. This occurs due to the mixture of the NV-related gap states and the surface image states, which is a novel and distinct process from the well-established band bending effect. We also find that certain types of coverages on the diamond surface may lead to blinking or bleaching due to the presence of acceptor surface states. We identify a combination of surface terminators that is perfect for NV-center based nanoscale sensing.