Understanding the fundamental factors influencing the epidemiology of wildlife disease is essential to determining the impact of disease on individual health and population dynamics. The host-pathogen-environment relationship of the endangered Australian sea lion (Neophoca cinerea) and the parasitic hookworm, Uncinaria sanguinis, was investigated in neonatal pups during summer and winter breeding seasons at two biogeographically disparate colonies in South Australia. The endemic occurrence of hookworm infection in Australian sea lion pups at these sites was 100% and post-parturient transmammary transmission is likely the predominant route of hookworm infection for pups. The prepatent period for U. sanguinis in Australian sea lion pups was determined to be 11-14 days and the duration of infection approximately 2-3 months. The mean hookworm infection intensity in pups found dead was 2138 ± 552 (n = 86), but a significant relationship between infection intensity and faecal egg count was not identified; infection intensity in live pups could not be estimated from faecal samples. Fluctuations in infection intensity corresponded to oscillations in the magnitude of colony pup mortality, that is, higher infection intensity was significantly associated with higher colony pup mortality and reduced pup body condition. The dynamic interaction between colony, season, and host behaviour is hypothesised to modulate hookworm infection intensity in this species. This study provides a new perspective to understanding the dynamics of otariid hookworm infection and provides evidence that U. sanguinis is a significant agent of disease in Australian sea lion pups and could play a role in population regulation in this species.