The cytokine thymic stromal lymphopoietin (TSLP) is produced by epithelia exposed to the contact sensitizer dibutyl phthalate (DBP), and it is critical for the induction of Th2 immune responses by DBP-FITC. TSLP is thought to act on dendritic cells (DC), but the precise DC subsets involved in the response to TSLP remain to be fully characterized. In this study we show that a subset of CD326(lo)CD103(lo)CD11b(lo) dermal DC, which we termed "triple-negative (TN) DC," is highly responsive to TSLP. In DBP-FITC-treated mice, TN DC upregulated expression of CD86 and rapidly migrated to the draining lymph node to become the most abundant skin-derived DC subset at 24 and 48 h after sensitization. None of these responses was observed in TSLPR-deficient mice. In contrast, TN DC numbers were not increased after treatment with the allergen house dust mite or the bacteria Escherichia coli and bacillus Calmette-Guérin, which increased other DC subsets. In vivo, treatment with rTSLP preferentially increased the numbers of TN DC in lymph nodes. In vitro, TN DC responded to rTSLP treatment with a higher level of STAT5 phosphorylation compared with other skin-derived DC subsets. The TN DC subset shared the morphology, phenotype, and developmental requirements of conventional DC, depending on FLT3 expression for their optimal development from bone marrow precursors, and CCR7 for migration to the draining lymph node. Thus, TN DC represent a dermal DC subset that should be considered in future studies of TSLP-dependent contact sensitization and skin immune responses.