Peroxynitrite (ONOO(-)), the product of a radical combination reaction of nitric oxide and superoxide, is a potent biological oxidant involved in a broad spectrum of physiological and pathological processes. Herein we report the development, characterization, and biological applications of a new fluorescent probe, HKGreen-4, for peroxynitrite detection and imaging. HKGreen-4 utilizes a peroxynitrite-triggered oxidative N-dearylation reaction to achieve an exceptionally sensitive and selective fluorescence turn-on response toward peroxynitrite in chemical systems and biological samples. We have thoroughly evaluated the utility of HKGreen-4 for intracellular peroxynitrite imaging and, more importantly, demonstrated that HKGreen-4 can be efficiently employed to visualize endogenous peroxynitrite generated in Escherichia coli-challenged macrophages and in live tissues from a mouse model of atherosclerosis. This probe should serve as a powerful molecular imaging tool to explore peroxynitrite biology under a variety of physiological and pathological contexts.