Molecular machines composed of RNA–protein (RNP) complexes may expand the fields of molecular robotics, nanomedicine, and synthetic biology. However, constructing and directly visualizing a functional RNP nanostructure to detect and control living cell function remains a challenge. Here we show that RNP nanostructures with modular functions can be designed and visualized at single-RNP resolution in real time. The RNP structural images collected in solution through high-speed atomic force microscopy showed that a single RNP interaction induces a conformational change in the RNA scaffold, which supports the nanostructure formation designed. The specific RNP interaction also improved RNA nanostructure stability in a serum-containing buffer. We developed and visualized functional RNPs (e.g., to detect human cancer cells or knockdown target genes) by attaching a protein or RNA module to the same RNA scaffold of an optimal size. The synthetic RNP architecture may provide alternative materials to detect and control functions in target mammalian cells.