To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ek(α,β) with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism.
Keywords: f-electron–mediated pairing mechanism; heavy fermion materials; unconventional superconductivity.