The longitudinal nuclear relaxation time, T1, sets a stringent limit on the range of information that can be obtained from magnetic resonance imaging (MRI) experiments. Long-lived nuclear spin states provide a possibility to extend the timescale over which information can be encoded in magnetic resonance. We introduce a strategy to localize an ensemble of molecules for a significantly extended duration (∼30 times longer than T1 in this example), using a spatially selective conversion between magnetization and long-lived singlet order. An application to tagging and transport is proposed.
Keywords: Magnetic resonance imaging; Singlet states; Spatial selectivity; Tagging.
Copyright © 2014 Elsevier Inc. All rights reserved.