A strain-sensing lyriform organ (HS-10) found on all of the legs of a Central American wandering spider (Cupiennius salei) detects courtship, prey and predator vibrations transmitted by the plant on which it sits. It has been suggested that the viscoelastic properties of a cuticular pad directly adjacent to the sensory organ contribute to the organ's pronounced high-pass characteristics. Here, we investigate the micromechanical properties of the cuticular pad biomaterial in search of a deeper understanding of its impact on the function of the vibration sensor. These properties are considered to be an effective adaptation for the selective detection of signals for frequencies >40 Hz. Using surface force spectroscopy mapping we determine the elastic modulus of the pad surface over a temperature range of 15-40 °C at various loading frequencies. In the glassy state, the elastic modulus was ~100 MPa, while in the rubbery state the elastic modulus decreased to 20 MPa. These data are analyzed according to the principle of time-temperature superposition to construct a master curve that relates mechanical properties, temperature and stimulus frequencies. By estimating the loss and storage moduli vs. temperature and frequency it was possible to make a direct comparison with electrophysiology experiments, and it was found that the dissipation of energy occurs within a frequency window whose position is controlled by environmental temperatures.
Keywords: Atomic force spectroscopy; Biomechanics; Biosensor materials; Stimulus transmission; Viscoelasticity.
Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.