Nuclear and mitochondrial genetic structure in the Eurasian beaver (Castor fiber) - implications for future reintroductions

Evol Appl. 2014 Jun;7(6):645-62. doi: 10.1111/eva.12162. Epub 2014 Jun 17.

Abstract

Many reintroduction projects for conservation fail, and there are a large number of factors that may contribute to failure. Genetic analysis can be used to help stack the odds of a reintroduction in favour of success, by conducting assessment of source populations to evaluate the possibility of inbreeding and outbreeding depression and by conducting postrelease monitoring. In this study, we use a panel of 306 SNP (single nucleotide polymorphism) markers and 487-489 base pairs of mitochondrial DNA control region sequence data to examine 321 individuals from possible source populations of the Eurasian beaver for a reintroduction to Scotland. We use this information to reassess the phylogenetic history of the Eurasian beavers, to examine the genetic legacy of past reintroductions on the Eurasian landmass and to assess the future power of the genetic markers to conduct ongoing monitoring via parentage analysis and individual identification. We demonstrate the capacity of medium density genetic data (hundreds of SNPs) to provide information suitable for applied conservation and discuss the difficulty of balancing the need for high genetic diversity against phylogenetic best fit when choosing source population(s) for reintroduction.

Keywords: applied conservation genetics; ascertainment bias; conservation genomics; evolutionarily significant unit; inbreeding depression; outbreeding depression; population augmentation.