Background: Intestinal inflammation is often associated with an increased level of serotonin (5-HT), an important gastrointestinal signaling molecule involved in gut homeostasis through stimulation of specific receptors. In this study, we investigated the role of 5-HT7 receptor (5-HT7R) in the induction and development of intestinal inflammation using a mouse model of acute and chronic colitis and human patients with Crohn's disease (CD).
Methods: Acute colitis was induced through administration of dextran sodium sulfate to wild-type, 5-HT7R-deficient mice and hematopoietic bone marrow chimera. Chronic colitis was induced in interleukin 10-deficient mice. The role of 5-HT7R in gut inflammation was assessed using agonist/antagonist treatment. We investigated expression and distribution of 5-HT7R, extent of gut inflammation with magnetic resonance imaging and histological analysis, survival rate, and disease activity index. Finally, biopsies from the large intestine of patients with CD were analyzed.
Results: Under basal conditions, 5-HT7R is expressed both in enteric neurons and CD11c cells of the large intestine. Expression of 5-HT7R significantly increased after induction of colitis in mice and in inflamed intestinal regions of patients with CD in CD11c/CD86 double-positive cells. Pharmacological blockade or genetic ablation of 5-HT7R resulted in increased severity of both acute and chronic dextran sodium sulfate-induced colitis, whereas receptor stimulation showed an anti-inflammatory effect. Analysis of bone marrow chimera indicated importance of 5-HT7R expressed by hematopoietic cells in intestinal inflammation.
Conclusions: The 5-HT7R expressed on CD11c/CD86-positive myeloid cells modulates the severity of intestinal inflammation in an acute and chronic colitis and thus represents a potential therapeutic target for the treatment of inflammatory disorders such as CD.