It is critical to create isotropic hot spots in developing a reproducible, homogeneous, and ultrasensitive SERS probe. Here, an Ag shell-Au satellite (Ag-Au SS) nanostructure composed of an Ag shell and surrounding Au nanoparticles was developed as a near-IR active SERS probe. The heterometallic shell-satellite structure based SERS probe produced intense and uniform SERS signals (SERS enhancement factor ∼1.4 × 10(6) with 11% relative standard deviation) with high detectability (100% under current measurement condition) by 785 nm photoexcitation. This signal enhancement was independent of the laser polarizations, which reflects the isotropic feature of the SERS activity of Ag-Au SS from the three-dimensional (3D) distribution of SERS hot spots between the shell and the surrounding satellite particles. The Ag-Au SS nanostructure shows a great potential as a reproducible and quantifiable NIR SERS probe for in vivo targets.