Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are known to critically influence brain development and functions. Dietary supplementation with n-3 PUFAs has been suggested as a non-pharmacological therapy for a number of developmental disorders, e.g., autistic spectrum disorders (ASD), but human studies so far have led to conflicting results. Furthermore, it has been hypothesized that the therapeutic impact of n-3 PUFAs on these disorders might be explained by their anti-inflammatory properties and their promoting effects on synaptic function and plasticity, but no clear evidence has been produced in this direction. We evaluated the impact of n-3 PUFA dietary supplementation in a mouse model of fragile X syndrome (FXS), i.e., a major developmental disease and the most frequent monogenic cause of ASD. Fmr1-KO and wild-type mice were provided with a diet enriched or not with n-3 PUFAs from weaning until adulthood when they were tested for multiple FXS-like behaviors. The brain expression of several cytokines and of brain-derived neurotrophic factor (BDNF) was concomitantly assessed as inflammatory and synaptic markers. n-3 PUFA supplementation rescued most of the behavioral abnormalities displayed by Fmr1-KO mice, including alterations in emotionality, social interaction and non-spatial memory, although not their deficits in social recognition and spatial memory. n-3 PUFAs also rescued most of the neuroinflammatory imbalances of KOs, but had a limited impact on their BDNF deficits. These results demonstrate that n-3 PUFAs dietary supplementation, although not a panacea, has a considerable therapeutic value for FXS and potentially for ASD, suggesting a major mediating role of neuroinflammatory mechanisms.
Keywords: Autism; Cytokines; Dietary enrichment; Fragile X; Gene–environment interactions; Neurotrophins.
Copyright © 2014 Elsevier Ltd. All rights reserved.