Background: The PINK1-Parkin pathway is known to play important roles in regulating mitochondria dynamics, motility, and quality control. Activation of this pathway can be triggered by a variety of cellular stress signals that cause mitochondrial damage. How this pathway senses different levels of mitochondrial damage and mediates cell fate decisions accordingly is incompletely understood.
Results: Here, we present evidence that PINK1-Parkin has both cytoprotective and proapoptotic functions. PINK1-Parkin operates as a molecular switch to dictate cell fate decisions in response to different cellular stressors. Cells exposed to severe and irreparable mitochondrial damage agents such as valinomycin can undergo PINK1-Parkin-dependent apoptosis. The proapoptotic response elicited by valinomycin is associated with the degradation of Mcl-1. PINK1 directly phosphorylates Parkin at Ser65 of its Ubl domain and triggers activation of its E3 ligase activity through an autocatalytic mechanism that amplifies its E3 ligase activity toward Mcl-1.
Conclusions: Autocatalytic activation of Parkin bolsters its accumulation on mitochondria and apoptotic response to valinomycin. Our results suggest that PINK1-Parkin constitutes a damage-gated molecular switch that governs cellular-context-specific cell fate decisions in response to variable stress stimuli.
Copyright © 2014 Elsevier Ltd. All rights reserved.