Theoretical calculations on formation energies of MgZnO, BeZnO and BeMgZnO alloys are presented. The ternary alloy MgZnO (BeZnO) is found to be unstable with high Mg (Be) contents. However, the quaternary system BeMgZnO is predicted to be stable with small Be/Mg atom ratio. Subsequently, a wurtzite Be0.17Mg0.54Zn0.29O alloy with a bandgap of 5.15 eV has been acquired experimentally. Its bandgap is in the middle of solar blind region and thus it is an ideal material for realizing a high rejection ratio solar blind ultraviolet (UV) detector, which has long been a problem. A metal-semiconductor-metal (MSM) structured solar blind UV detector based on this material is then fabricated, realizing a much higher rejection ratio than reported MgZnO-based detectors. One more interesting thing is, as a complicated quaternary system, BeMgZnO can maintain its crystal quality in a wide compositional range, which is not happening in MgZnO and BeZnO. To get some microscopic insight into the Be-Mg mutual stabilizing mechanism, more calculations on the lattice constants of BeZnO and MgZnO alloys, and the coordination preference of Be ions in alloy were conducted. The a-axis lattice compensation and 4-fold coordination preference of Be atom are confirmed the major origins for Be-Mg mutual stabilizing in ZnO lattice.