Wavelength conversion based on four-wave mixing (FWM) in a silicon-organic hybrid slot waveguide is theoretically investigated in the telecommunication bands. Compared with vertical slot waveguides, the horizontal slot waveguide structure exhibits much flatter dispersion. The maximum nonlinearity coefficient γ of 1.5×10⁷ W⁻¹ km⁻¹ and the minimum effective mode area A(eff) of 0.065 μm² are obtained in a horizontal slot waveguide with a 20-nm-thick optically nonlinear layer by controlling the geometric parameters. The wavelength conversion efficiency of 7.45 dB with a pump power of 100 mW in a 4-mm-long horizontal slot waveguide is obtained. This low power on-chip wavelength convertor will have potential applications in highly integrated optical circuits.