Rapid and reagentless detection of microbial contamination within meat utilizing a smartphone-based biosensor

Sci Rep. 2014 Aug 5:4:5953. doi: 10.1038/srep05953.

Abstract

A smartphone-utilized biosensor was developed for detecting microbial spoilage on ground beef, without using antibodies, microbeads or any other reagents, towards a preliminary screening tool for microbial contamination on meat products, and potentially towards wound infection. Escherichia coli K12 solutions (10(1)-10(8) CFU/mL) were added to ground beef products to simulate microbial spoilage. An 880 nm near infrared LED was irradiated perpendicular to the surface of ground beef, and the scatter signals at various angles were evaluated utilizing the gyro sensor and the digital camera of a smartphone. The angle that maximized the Mie scatter varied by the E. coli concentration: 15° for 10(8) CFU/mL, 30° for 10(4) CFU/mL, and 45° for 10 CFU/mL, etc. SEM and fluorescence microscopy experiments revealed that the antigens and cell fragments from E. coli bonded preferably to the fat particles within meat, and the size and morphologies of such aggregates varied by the E. coli concentration.

MeSH terms

  • Adipose Tissue / chemistry
  • Animals
  • Antigens, Bacterial / chemistry
  • Bacterial Proteins / chemistry
  • Biosensing Techniques / instrumentation*
  • Cattle
  • Cell Phone / instrumentation*
  • Escherichia coli / isolation & purification
  • Food Contamination / analysis*
  • Infrared Rays
  • Meat Products / analysis*
  • Meat Products / microbiology
  • Protein Binding
  • Sensitivity and Specificity

Substances

  • Antigens, Bacterial
  • Bacterial Proteins