To date, intergenotypic recombinant hepatitis C viruses (HCVs) and their treatment outcomes have not been well characterized. This study characterized 12 novel HCV recombinant strains and their response to sofosbuvir in combination with ribavirin (SOF/RBV) treatment. Across the phase II/III studies of SOF, HCV samples were genotyped using both the Siemens VERSANT HCV Genotype INNO-LiPA 2.0 Assay (Innogenetics, Ghent, Belgium) and nonstructural (NS)5B sequencing. Among these patient samples, genotype assignment discordance between the two methods was found in 0.5% of all cases (12 of 2,363), of which all were identified as genotype 2 by INNO-LiPA (12 of 487; 2.5%). HCV full-genome sequences were obtained for these 12 samples by a sequence-independent amplification method coupled with next-generation sequencing. HCV full-genome sequencing revealed that these viruses were recombinant HCV strains, with the 5' part corresponding to genotype 2 and the 3' part corresponding to genotype 1. The recombination breakpoint between genotypes 2 and 1 was consistently located within 80 amino acids of the NS2/NS3 junction. Interestingly, one of the recombinant viruses had a 34-amino-acid duplication at the location of the recombination breakpoint. Eleven of these twelve patients were treated with a regimen for genotype 2 HCV infection, but responded as if they had genotype 1 infection; 1 patient had received placebo.
Conclusion: Twelve new HCV intergenotypic recombinant genotype 2/1 viruses have been characterized. The antiviral response to a 12- to 16-week course of SOF/RBV treatment in these patients was more similar to responses among genotype 1 patients than genotype 2 patients, consistent with their genotype 1 NS5B gene.
© 2014 by the American Association for the Study of Liver Diseases.