Background: With advances in next generation sequencing technologies and genomic capture techniques, exome sequencing has become a cost-effective approach for mutation detection in genetic diseases. However, computational prediction of copy number variants (CNVs) from exome sequence data is a challenging task. Whilst numerous programs are available, they have different sensitivities, and have low sensitivity to detect smaller CNVs (1-4 exons). Additionally, exonic CNV discovery using standard aCGH has limitations due to the low probe density over exonic regions. The goal of our study was to develop a protocol to detect exonic CNVs (including shorter CNVs that cover 1-4 exons), combining computational prediction algorithms and a high-resolution custom CGH array.
Results: We used six published CNV prediction programs (ExomeCNV, CONTRA, ExomeCopy, ExomeDepth, CoNIFER, XHMM) and an in-house modification to ExomeCopy and ExomeDepth (ExCopyDepth) for computational CNV prediction on 30 exomes from the 1000 genomes project and 9 exomes from primary immunodeficiency patients. CNV predictions were tested using a custom CGH array designed to capture all exons (exaCGH). After this validation, we next evaluated the computational prediction of shorter CNVs. ExomeCopy and the in-house modified algorithm, ExCopyDepth, showed the highest capability in detecting shorter CNVs. Finally, the performance of each computational program was assessed by calculating the sensitivity and false positive rate.
Conclusions: In this paper, we assessed the ability of 6 computational programs to predict CNVs, focussing on short (1-4 exon) CNVs. We also tested these predictions using a custom array targeting exons. Based on these results, we propose a protocol to identify and confirm shorter exonic CNVs combining computational prediction algorithms and custom aCGH experiments.