Aims: To determine the association between coronary vessel wall morphology and haemodynamic consequences to the myocardium using a combined cardiovascular magnetic resonance (CMR) imaging protocol. Non-invasive CMR profiling of coronary atherosclerotic wall changes and related myocardial blood flow impairment has not been established yet.
Methods and results: Sixty-three patients (45 men, 61.5 ± 10.7 years) with suspected or known coronary artery disease underwent 3.0 Tesla CMR imaging. The combined CMR protocol consisted of the following imaging modules at rest: 3D vessel wall imaging and flow measurement of the proximal right coronary artery (RCA), myocardial T2*, and first-pass perfusion imaging. During adenosine stress coronary flow, T2* and first-pass perfusion imaging were repeated. Coronary X-ray angiography classified patient groups: (i) all-smooth (n = 19); (ii) luminal irregular (diameter reduction < 30%; n = 35); and (iii) stenosed RCA (diameter reduction ≥ 50%; n = 9). The ratio of CMR-derived vessel wall area-to-lumen area significantly increased stepwise for the comparison of all-smooth vs. luminal irregular vs. stenosed RCA (1.9 ± 0.6 vs. 2.6 ± 0.6 vs. 3.6 ± 0.9, P < 0.01). Epicardial coronary flow reserve exhibited a stepwise significant decrease (3.4 ± 0.5 vs. 2.9 ± 0.7 vs. 1.7 ± 0.3, P < 0.01). On the myocardial level, stress-induced percentage gain of T2* values (ΔT2*) was significantly decreased between groups (29.2 ± 10.6 vs. 9.0 ± 9.8 vs. 2.2 ± 11.8%, P < 0.01) while perfusion reserve index decreased in the presence of stenosed RCA only (2.2 ± 0.6 vs. 2.0 ± 0.4 vs. 1.3 ± 0.3, P = ns and P < 0.01, respectively).
Conclusion: The proposed comprehensive CMR imaging protocol provided a non-invasive approach for direct assessment of coronary vessel wall remodelling and resultant pathophysiological consequences on the level of epicardial coronary and myocardial blood flow in patients.
Keywords: Coronary atherosclerosis; Coronary flow reserve; Magnetic resonance imaging; Myocardial blood flow; Myocardial oxygenation; Vessel wall imaging.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: [email protected].