Background: Breast cancer stem cells (BCSCs) have been recognized as playing a major role in various aspects of breast cancer biology. To identify specific biomarkers of BCSCs, we have performed comparative proteomics of BCSC-enriched and mature cancer cell populations from the human breast cancer cell line (BCL), BrCA-MZ-01.
Methods: ALDEFLUOR assay was used to sort BCSC-enriched (ALDH+) and mature cancer (ALDH-) cell populations. Total proteins were extracted from both fractions and subjected to 2-Dimensional Difference In-Gel Electrophoresis (2-D DIGE). Differentially-expressed spots were excised and proteins were gel-extracted, digested and identified using MALDI-TOF MS.
Results: 2-D DIGE identified poly(ADP-ribose) polymerase 1 (PARP1) as overexpressed in ALDH+ cells from BrCA-MZ-01. This observation was confirmed by western blot and extended to four additional human BCLs. ALDH+ cells from BRCA1-mutated HCC1937, which had the highest level of PARP1 overexpression, displayed resistance to olaparib, a specific PARP1 inhibitor.
Conclusion: An unbiased proteomic approach identified PARP1 as upregulated in ALDH+, BCSC-enriched cells from various human BCLs, which may contribute to clinical resistance to PARP inhibitors.