Objective: To evaluate the usefulness of dynamic gadolinium-enhanced magnetic resonance imaging (MRI) for assessing the viability of the proximal pole of the scaphoid in patients with acute scaphoid fractures.
Methods: Eighteen consecutive patients with acute scaphoid fracture who underwent dynamic gadolinium-enhanced MRI 7 days or less before surgery were prospectively included between August 2011 and December 2012. All patients underwent MR imaging with unenhanced images, enhanced images, and dynamic enhanced images. A radiologist first classified the MRI results as necrotic or viable based on T1- and T2-weighted images only, followed by a second blinded interpretation, this time including analysis of pre- and post-gadolinium administration images and a third blinded interpretation based on the time-intensity curve of the dynamic enhanced study. The standard of reference was the histologic assessment of a cylindrical specimen of the proximal pole obtained during surgery in all patients. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for unenhanced, enhanced, and dynamic gadolinium-enhanced MRI studies.
Results: The sensitivity, specificity, PPV, and NPV were 67, 67, 50, and 80 % for unenhanced images, 83, 100, 100, and 92 for enhanced images, and 83, 92, 83, and 92 for dynamic contrast-enhanced images.
Conclusions: Our data are consistent with previously reported data supporting contrast-enhanced MRI for assessment of viability, and showing that dynamic imaging with time-intensity curve analysis does not provide additional predictive value over standard delayed enhanced imaging for acute scaphoid fracture.