A Thorax Simulator for Complex Dynamic Bioimpedance Measurements With Textile Electrodes

IEEE Trans Biomed Circuits Syst. 2015 Jun;9(3):412-20. doi: 10.1109/TBCAS.2014.2337372. Epub 2014 Aug 19.

Abstract

Bioimpedance measurements on the human thorax are suitable for assessment of body composition or hemodynamic parameters, such as stroke volume; they are non-invasive, easy in application and inexpensive. When targeting personal healthcare scenarios, the technology can be integrated into textiles to increase ease, comfort and coverage of measurements. Bioimpedance is generally measured using two electrodes injecting low alternating currents (0.5-10 mA) and two additional electrodes to measure the corresponding voltage drop. The impedance is measured either spectroscopically (bioimpedance spectroscopy, BIS) between 5 kHz and 1 MHz or continuously at a fixed frequency around 100 kHz (impedance cardiography, ICG). A thorax simulator is being developed for testing and calibration of bioimpedance devices and other new developments. For the first time, it is possible to mimic the complete time-variant properties of the thorax during an impedance measurement. This includes the dynamic real part and dynamic imaginary part of the impedance with a peak-to-peak value of 0.2 Ω and an adjustable base impedance (24.6 Ω ≥ Z0 ≥ 51.6 Ω). Another novelty is adjustable complex electrode-skin contact impedances for up to 8 electrodes to evaluate bioimpedance devices in combination with textile electrodes. In addition, an electrocardiographic signal is provided for cardiographic measurements which is used in ICG devices. This provides the possibility to generate physiologic impedance changes, and in combination with an ECG, all parameters of interest such as stroke volume (SV), pre-ejection period (PEP) or extracellular resistance (Re) can be simulated. The speed of all dynamic signals can be altered. The simulator was successfully tested with commercially available BIS and ICG devices and the preset signals are measured with high correlation (r = 0.996).

MeSH terms

  • Dielectric Spectroscopy / instrumentation*
  • Electrocardiography / instrumentation
  • Electrodes
  • Humans
  • Thorax / physiology*