The last two decades have seen the rise of antimicrobial peptides (AMPs) to combat emerging antibiotic resistance. Herein we report the solid-phase synthesis of short lipidated α/γ-AA hybrid peptides. This family of lipo-chimeric peptidomimetics displays potent and broad-spectrum antimicrobial activity against a range of multi-drug resistant Gram-positive and Gram-negative bacteria. These lipo-α/γ-AA hybrid peptides also demonstrate high biological specificity, with no hemolytic activity towards red blood cells. Fluorescence microscopy suggests that these lipo-α/γ-AA chimeric peptides can mimic the mode of action of AMPs and kill bacterial pathogens via membrane disintegration. As the composition of these chimeric peptides is simple, therapeutic development could be economically feasible and amenable for a variety of antimicrobial applications.
Keywords: Gram-negative bacteria; Gram-positive bacteria; antimicrobial peptides; hemolysis; resistance; solid-phase synthesis.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.