Reactive oxygen species promote ovarian cancer progression via the HIF-1α/LOX/E-cadherin pathway

Oncol Rep. 2014 Nov;32(5):2150-8. doi: 10.3892/or.2014.3448. Epub 2014 Aug 28.

Abstract

Reactive oxygen species (ROS) can drive the de‑differentiation of tumor cells leading to the process of epithelial-to-mesenchymal transition (EMT) to enhance invasion and metastasis. The invasive and metastatic phenotype of malignant cells is often linked to loss of E-cadherin expression, a hallmark of EMT. Recent studies have demonstrated that hypoxic exposure causes HIF-1-dependent repression of E-cadherin. However, the mechanism by which ROS and/or HIF suppresses E-cadherin expression remains less clear. In the present study, we found that ROS accumulation in ovarian carcinoma cells upregulated HIF-1α expression and subsequent transcriptional induction of lysyl oxidase (LOX) which repressed E-cadherin. Loss of E-cadherin facilitated ovarian cancer (OC) cell migration in vitro and promoted tumor growth in vivo. E-cadherin immunoreactivity correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, tumor differentiation and metastasis. Negative E-cadherin expression along with FIGO stage, tumor differentiation and metastasis significantly predicted for a lower 5-year survival rate. These findings suggest that ROS play an important role in the initiation of metastatic growth of OC cells and support a molecular pathway from ROS to aggressive transformation which involves upregulation of HIF-1α and its downstream target LOX to suppress E-cadherin expression leading to an increase in cell motility and invasiveness.

MeSH terms

  • Adult
  • Aged
  • Animals
  • Antigens, CD
  • Cadherins / genetics
  • Cadherins / metabolism*
  • Carcinoma, Ovarian Epithelial
  • Cell Line, Tumor
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Mice
  • Mice, Nude
  • Middle Aged
  • Neoplasm Invasiveness
  • Neoplasm Transplantation
  • Neoplasms, Glandular and Epithelial / genetics
  • Neoplasms, Glandular and Epithelial / metabolism*
  • Neoplasms, Glandular and Epithelial / pathology*
  • Ovarian Neoplasms / genetics
  • Ovarian Neoplasms / metabolism*
  • Ovarian Neoplasms / pathology*
  • Protein-Lysine 6-Oxidase / genetics
  • Protein-Lysine 6-Oxidase / metabolism*
  • Reactive Oxygen Species / metabolism*
  • Signal Transduction

Substances

  • Antigens, CD
  • CDH1 protein, human
  • Cadherins
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Reactive Oxygen Species
  • Protein-Lysine 6-Oxidase