Induction of mesenchymal stem cell differentiation and cartilage formation by cross-linker-free collagen microspheres

Eur Cell Mater. 2014 Sep 2:28:82-96; discussion 96-7. doi: 10.22203/ecm.v028a07.

Abstract

Because of poor self-healing ability, joint cartilage can undergo irreversible degradation in the course of various diseases or after injury. A promising approach for cartilage engineering consists of using of mesenchymal stem cells (MSC) and a differentiation factor combined with an injectable carrier biomaterial. We describe here a novel synthesis route for native collagen microspheres that does not involve the use of potentially toxic crosslinking agents. An emulsion was formed between a type I collagen solution and perfluorinated oil, stabilised by a biocompatible triblock perfluorinated copolymer surfactant. Spherical microparticles of fibrillar collagen were formed through a sol-gel transition induced by ammonia vapours. Electron microscopy observations showed that these self-cross-linked microspheres were constituted by a gel of striated collagen fibrils. Microspheres that were loaded with transforming growth factor beta (TGF-β)3 progressively released this differentiation factor over a four weeks period. Human MSC rapidly adhered to TGF-β3-loaded microspheres and, after 21 d of culture, exhibited typical chondrocyte morphology and produced an uncalcified matrix made of the predominant cartilage components, aggrecan and type II collagen, but devoid of the hypertrophic marker type X collagen. Subcutaneous co-injection of MSC and TGF-β3-loaded microspheres in mice consistently led to the formation of a cartilage-like tissue, which was however hypertrophic, calcified and vascularised. In conclusion, we developed cross-linker free collagen microspheres that allowed chondrogenic differentiation of MSC in vitro and in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cartilage / cytology
  • Cartilage / physiology*
  • Cell Differentiation*
  • Cells, Cultured
  • Chondrogenesis*
  • Collagen Type I / chemistry
  • Collagen Type I / pharmacology*
  • Cross-Linking Reagents / toxicity
  • Humans
  • Mesenchymal Stem Cell Transplantation
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects
  • Mice
  • Mice, SCID
  • Microspheres*
  • Regeneration
  • Tissue Scaffolds / chemistry
  • Transforming Growth Factor beta / pharmacology

Substances

  • Collagen Type I
  • Cross-Linking Reagents
  • Transforming Growth Factor beta