Because multi-wall carbon nanotubes (MWCNTs) have asbestos-like shape and size, concerns about their pathogenicity have been raised. Contaminated metals of MWCNTs may also be responsible for their toxicity. In this study, we employed high-temperature calcined fullerene nanowhiskers (HTCFNWs), which are needle-like nanofibers composed of amorphous carbon having similar sizes to MWCNTs but neither metal impurities nor tubular structures, and investigated their ability to induce production a major proinflammatory cytokine IL-1β via the Nod-like receptor pyrin domain containing 3 (NLRP3)-containing flammasome-mediated mechanism. When exposed to THP-1 macrophages, long-HTCFNW exhibited robust IL-1β production as long and needle-like MWCNTs did, but short-HTCFNW caused very small effect. IL-1β release induced by long-HTCFNW as well as by long, needle-like MWCNTs was abolished by a caspase-1 inhibitor or siRNA-knockdown of NLRP3, indicating that NLRP3-inflammasome-mediated IL-1β production by these carbon nanofibers. Our findings indicate that the needle-like shape and length, but neither metal impurities nor tubular structures of MWCNTs were critical to robust NLRP3 activation.
Keywords: Carbon nanotubes; Fullerene nanowhiskers; IL-1β; NLRP3.
Copyright © 2014 Elsevier Inc. All rights reserved.