The rapid increase in Mycobacterium tuberculosis resistance to ethambutol (EMB) threatens the diagnosis and treatment of tuberculosis (TB). We investigated the role of mutations in the embC-embA intergenic region (IGR) in EMB-resistant clinical strains from east China. A total of 767 M. tuberculosis clinical strains were collected and analyzed for their drug susceptibility to EMB using the MGIT 960 system and MIC assay, and the embC-embA IGRs of these strains were sequenced. The transcriptional activity of the embC-embA IGR mutations was examined by reporter gene assays in recombinant Mycobacterium smegmatis strains, and the effect of IGR mutations on its binding to EmbR, a transcription regulator of embAB, was analyzed by gel mobility shift assays. Correlation coefficient analysis showed that the embC-embA IGR mutation is associated with EMB resistance. The clinical strains carrying IGR mutations had a much higher level of embA and embB mRNA as well as higher MICs to EMB. IGR mutations had higher transcriptional activity when transformed into M. smegmatis strains. Mutated IGRs bound to EmbR with much higher affinity than wild-type fragments. The sensitivity of molecular drug susceptibility testing (DST) with IGR mutations as an additional marker increased from 65.5% to 73.5%. Mutations of the embC-embA IGR enhance the binding of EmbR to the promoter region of embAB and increase the expression of embAB, thus contributing to EMB resistance. Therefore, identification of IGR mutations as markers of EMB resistance could increase the sensitivity of molecular DST.
Copyright © 2014, American Society for Microbiology. All Rights Reserved.