Phenotypic plasticity is considered as an important mechanism for plants to cope with environmental challenges. Leaf growth is one of the first macroscopic processes to be impacted by modification of soil water availability. In this study, we intended to analyze and compare plasticity at different scales. We examined the differential effect of water regime (optimal, moderate water deprivation and recovery) on growth and on the expression of candidate genes in leaves of different growth stages. Candidates were selected to assess components of growth response: abscisic acid signaling, water transport, cell wall modification and stomatal development signaling network. At the tree scale, the four studied poplar hybrids responded similarly to water regime. Meanwhile, leaf growth response was under genotype × environment interaction. Patterns of candidate gene expression enriched our knowledge about their functionality in poplars. For most candidates, transcript levels were strongly structured according to leaf growth performance while response to water regime was clearly dependent on genotype. The use of an index of plasticity revealed that the magnitude of the response was higher for gene expression than for macroscopic traits. In addition, the ranking of poplar genotypes for macroscopic traits well paralleled the one for gene expression.
© 2014 Scandinavian Plant Physiology Society.