Polycythemia vera, essential thrombocythemia, and primary myleofibrosis are chronic myeloproliferative neoplasms (MPNs) associated with an increased morbidity and mortality. MPNs are also associated with progression to acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). The "true" rate of transformation is not known mainly due to selection bias in clinical trials and underreporting in population-based studies. The outcome after transformation is dismal. The underlying mechanisms of transformation are incompletely understood and in part remain an area of controversy. There is an intrinsic propensity in MPNs to progress to AML/MDS, the magnitude of which is not fully known, supporting a role for nontreatment-related factors. High doses of alkylating agents, P(32) and combined cytoreductive treatments undoubtedly increase the risk of transformation. The potential leukemogenic role of hydroxyurea has been a matter of debate due to difficulties in performing large prospective randomized trials addressing this issue. The main focus of this review is to elucidate therapy-related leukemic transformation in MPNs with a special focus on the role of hydroxyurea.
Keywords: JAK2 mutation; X-ray treatment; alkylators; antineoplastic agents; essential thrombocythemia; hydroxyurea; leukemia etiology; leukemic transformation; myeloproliferative neoplasm; polycythemia vera; primary myelofibrosis; radioactive phosphorous; risk factor.
Copyright © 2014 Elsevier Ltd. All rights reserved.