Francisella (F.) tularensis causes the zoonotic disease tularemia and categorized as one of the highest-priority biological agents. The sensing approaches utilized by conventional detection methods, including enzyme-linked immunosorbent assay (ELISA), are not sensitive enough to identify an infectious dose of this high-risk pathogen due to its low infective dose. As an attempt to detect F. tularensis with high sensitivity, we utilized the highly sensitive immunoassay system named gold nanoparticle-based oligonucleotide-linked immunosorbent assay (GNP-OLISA) which uses antibody-gold nanoparticles conjugated with DNA strands as a signal generator and RNA oligonucleotides appended with a fluorophore as a quencher for signal amplification. We modified the GNP-OLISA for the detection F. tularensis to utilize one antibody for both the capture of the target and for signal generation instead of using two different antibodies, which are usually employed to construct the antibody sandwich in the ELISA. The GNP-OLISA showed 37-fold higher sensitivity compared with ELISA and generated very consistent detection results in the sera. In addition, the detection specificity was not affected by the presence of non-target bacteria, suggesting that GNP-OLISA can be used as a sensitive detection platform for monitoring high-risk pathogens thereby overcoming the limit of the conventional assay system.
Keywords: Bacteria; Detection sensitivity; ELISA; Francisella tularensis; Gold-nanoparticle; OLISA.
Copyright © 2014 Elsevier B.V. All rights reserved.