Resource management of the main memory and process handler is critical to enhancing the system performance of a web server. Owing to the transaction delay time that affects incoming requests from web clients, web server systems utilize several web processes to anticipate future requests. This procedure is able to decrease the web generation time because there are enough processes to handle the incoming requests from web browsers. However, inefficient process management results in low service quality for the web server system. Proper pregenerated process mechanisms are required for dealing with the clients' requests. Unfortunately, it is difficult to predict how many requests a web server system is going to receive. If a web server system builds too many web processes, it wastes a considerable amount of memory space, and thus performance is reduced. We propose an adaptive web process manager scheme based on the analysis of web log mining. In the proposed scheme, the number of web processes is controlled through prediction of incoming requests, and accordingly, the web process management scheme consumes the least possible web transaction resources. In experiments, real web trace data were used to prove the improved performance of the proposed scheme.