Building-up of a DNA barcode library for true bugs (insecta: hemiptera: heteroptera) of Germany reveals taxonomic uncertainties and surprises

PLoS One. 2014 Sep 9;9(9):e106940. doi: 10.1371/journal.pone.0106940. eCollection 2014.

Abstract

During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance <2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances >2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA
  • DNA Barcoding, Taxonomic / methods
  • Gene Library
  • Genes, Insect / genetics
  • Germany
  • Hemiptera / genetics*
  • Heteroptera / genetics*
  • Phylogeny

Substances

  • DNA

Grants and funding

The project was supported by grants from the Bavarian State Government (BFB) and the German Federal Ministry of Education and Research (GBOL2:01LI1101B). The sequencing work was supported by funding from the Government of Canada to Genome Canada through the Ontario Genomics Institute, while the Ontario Ministry of Research and Innovation and NSERC supported development of the BOLD informatics platform. Many species were collected in the framework of the DFG Priority Program 1374 "Infrastructure-Biodiversity-Exploratories" (WE 3018/21-1) by MMG, who was also supported by this project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.