Isoform-specific SCF(Fbw7) ubiquitination mediates differential regulation of PGC-1α

J Cell Physiol. 2015 Apr;230(4):842-52. doi: 10.1002/jcp.24812.

Abstract

The E3 ubiquitin ligase and tumor suppressor SCF(Fbw7) exists as three isoforms that govern the degradation of a host of critical cell regulators, including c-Myc, cyclin E, and PGC-1α. Peroxisome proliferator activated receptor-gamma coactivator 1α (PGC-1α) is a transcriptional coactivator with broad effects on cellular energy metabolism. Cellular PGC-1α levels are tightly controlled in a dynamic state by the balance of synthesis and rapid degradation via the ubiquitin-proteasome system. Isoform-specific functions of SCF(Fbw7) are yet to be determined. Here, we show that the E3 ubiquitin ligase, SCF(Fbw7), regulates cellular PGC-1α levels via two independent, isoform-specific, mechanisms. The cytoplasmic isoform (SCF(Fbw7β)) reduces cellular PGC-1α levels via accelerated ubiquitin-proteasome degradation. In contrast, the nuclear isoform (SCF(Fbw7α)) increases cellular PGC-1α levels and protein stability via inhibition of ubiquitin-proteasomal degradation. When nuclear Fbw7α proteins are redirected to the cytoplasm, cellular PGC-1α protein levels are reduced through accelerated ubiquitin-proteasomal degradation. We find that SCF(Fbw7β) catalyzes high molecular weight PGC-1α-ubiquitin conjugation, whereas SCF(Fbw7α) produces low molecular weight PGC-1α-ubiquitin conjugates that are not effective degradation signals. Thus, selective ubiquitination by specific Fbw7 isoforms represents a novel mechanism that tightly regulates cellular PGC-1α levels. Fbw7 isoforms mediate degradation of a host of regulatory proteins. The E3 ubiquitin ligase, Fbw7, mediates PGC-1α levels via selective isoform-specific ubiquitination. Fbw7β reduces cellular PGC-1α via ubiquitin-mediated degradation, whereas Fbw7α increases cellular PGC-1α via ubiquitin-mediated stabilization.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle Proteins / metabolism*
  • Cells, Cultured
  • Cytoplasm / metabolism
  • F-Box Proteins / metabolism*
  • F-Box-WD Repeat-Containing Protein 7
  • Humans
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Phosphorylation
  • Proteasome Endopeptidase Complex / metabolism
  • Protein Isoforms / metabolism
  • Transcription Factors / metabolism*
  • Ubiquitin-Protein Ligases / metabolism*
  • Ubiquitination / physiology*

Substances

  • Cell Cycle Proteins
  • F-Box Proteins
  • F-Box-WD Repeat-Containing Protein 7
  • FBXW7 protein, human
  • PPARGC1A protein, human
  • Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
  • Protein Isoforms
  • Transcription Factors
  • Ubiquitin-Protein Ligases
  • Proteasome Endopeptidase Complex