Climate change is resulting in increasing atmospheric [CO2], rising growth temperature (T), and greater frequency/severity of drought, with each factor having the potential to alter the respiratory metabolism of leaves. Here, the effects of elevated atmospheric [CO2], sustained warming, and drought on leaf dark respiration (R(dark)), and the short-term T response of R(dark) were examined in Eucalyptus globulus. Comparisons were made using seedlings grown under different [CO2], T, and drought treatments. Using high resolution T-response curves of R(dark) measured over the 15-65 °C range, it was found that elevated [CO2], elevated growth T, and drought had little effect on rates of R(dark) measured at T <35 °C and that there was no interactive effect of [CO2], growth T, and drought on T response of R(dark). However, drought increased R(dark) at high leaf T typical of heatwave events (35-45 °C), and increased the measuring T at which maximal rates of R(dark) occurred (Tmax) by 8 °C (from 52 °C in well-watered plants to 60 °C in drought-treated plants). Leaf starch and soluble sugars decreased under drought and elevated growth T, respectively, but no effect was found under elevated [CO2]. Elevated [CO2] increased the Q 10 of R(dark) (i.e. proportional rise in R(dark) per 10 °C) over the 15-35 °C range, while drought increased Q 10 values between 35 °C and 45 °C. Collectively, the study highlights the dynamic nature of the T dependence of R dark in plants experiencing future climate change scenarios, particularly with respect to drought and elevated [CO2].
Keywords: Dark respiration; Eucalyptus globulus; Q10; drought; elevated CO2; temperature response..
© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.