The aims of this study were to (1) determine any changes in the levels of persistent organic pollutants (POP) and mercury (Hg) in human plasma and adipose tissue and (2) examine associations between plasma levels of pollutants and dietary fat intake. Outpatients with different metabolic disorders (n = 42) consumed 380 g of farmed Atlantic salmon fillets or 60 g of salmon oil per week in two study periods of 15 wk each, and were compared with a control group (n = 14). Concentrations of POP and Hg were measured in salmon fillets, salmon oil capsules, plasma and abdominal fat biopsies from patients before and after intervention. Mean concentrations of hexachlorobenzene (HCB), p,p'-DDE, sum of indicator polychlorinated biphenyls (PCB) (id-PCB), and sum polybrominated diphenyl ethers (PBDE) in abdominal fat at intervention start were 21, 191, 267, and 4.2 ng/g lipid weight. After 15 or 30 wk of salmon consumption no significant changes in concentrations of POP and Hg in samples of human plasma and abdominal fat were observed, indicating that steady-state levels of these pollutants were not markedly affected. The lack of significant changes may partly be attributed to a limited number of samples, large interindividual variation in POP levels, and a large age span (20-70 yr). After adjusting for age, significant associations were found between different plasma long-chain fatty acid concentrations, including n-3 and n-6 fatty acids and oleic acid, and some of the POP. The results indicate that the latter have different food products as their main sources of human exposure.