The ability to direct neurite growth into a close proximity of stimulating elements of a neural prosthesis, such as a retinal or cochlear implant (CI), may enhance device performance and overcome current spatial signal resolution barriers. In this work, spiral ganglion neurons (SGNs), which are the target neurons to be stimulated by CIs, were cultured on photopolymerized micropatterns with varied matrix stiffnesses to determine the effect of rigidity on neurite alignment to physical cues. Micropatterns were generated on methacrylate thin film surfaces in a simple, rapid photopolymerization step by photomasking the prepolymer formulation with parallel line-space gratings. Two methacrylate series, a nonpolar HMA-co-HDDMA series and a polar PEGDMA-co-EGDMA series, with significantly different surface wetting properties were evaluated. Equivalent pattern periodicity was maintained across each methacrylate series based on photomask band spacing, and the feature amplitude was tuned to a depth of 2 μm amplitude for all compositions using the temporal control afforded by the UV curing methodology. The surface morphology was characterized by scanning electron microscopy and white light interferometry. All micropatterned films adsorb similar amounts of laminin from solution, and no significant difference in SGN survival was observed when the substrate compositions were compared. SGN neurite alignment significantly increases with increasing material modulus for both methacrylate series. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa). The ability to understand neurite response to engineered physical cues and mechanical properties such as matrix stiffness will allow the development of advanced biomaterials that direct de novo neurite growth to address the spatial signal resolution limitations of current neural prosthetics.