Cardiac Ca2+ cycling and signaling are closely associated with cardiac function. Changes in cellular Ca2+ homeostasis may lead to aberrant cardiac rhythm and may play a critical role in the pathogenesis of cardiac diseases, due to their exacerbation of heart failure. MicroRNAs (miRNAs) play a key role in the regulation of gene expression at the post-transcriptional level and participate in regulating diverse biological processes. The emerging evidence indicates that the expression profiles of miRNAs vary among human diseases, including cardiovascular diseases. Cardiac Ca2+-handling and signaling proteins are also regulated by miRNAs. Given the relationship between cardiac Ca2+ homeostasis and signaling and miRNA, Ca2+-related miRNAs may serve as therapeutic targets during the treatment of heart failure. In this review, we summarize the knowledge currently available regarding the role of Ca2+ in cardiac function, as well as changes in Ca2+ cycling and homeostasis and the handling of these processes by miRNAs during cardiac ischemia-reperfusion injury.