Objectives: The objective of this study was to propose an optimal treatment regimen of meropenem in critically ill patients with severe nosocomial pneumonia.
Patients and methods: Among 55 patients in intensive care treated with 1 g of meropenem every 8 h for severe nosocomial pneumonia, 30 were assigned to intermittent infusion (II; over 0.5 h) and 25 to extended infusion (EI; over 3 h) groups. Based on plasma and epithelial lining fluid (ELF) concentrations determined at steady-state, pharmacokinetic modelling and Monte Carlo simulations were undertaken to assess the probability of attaining drug concentrations above the MIC for 40%-100% of the time between doses (%T > 1-fold and 4-fold MIC), for 1 or 2 g administered by either method.
Results: Penetration ratio, measured by the ELF/plasma ratio of AUCs, was statistically higher in the EI group than in the II group (mean ± SEM: 0.29 ± 0.030 versus 0.20 ± 0.033, P = 0.047). Considering a maximum susceptibility breakpoint of 2 mg/L, all dosages and modes of infusions achieved 40%-100% T > 1-fold MIC in plasma, but none did so in ELF, and only the 2 g dose over EI achieved 40%-100% T > 4-fold MIC in plasma.
Conclusions: The optimum regimen to treat severe nosocomial pneumonia was 2 g of meropenem infused over 3 h every 8 h. This regimen achieved the highest pharmacodynamic targets both in plasma and in ELF.
Keywords: Monte Carlo simulations; critically ill patients; epithelial lining fluid concentrations.
© The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: [email protected].