Background: Malaria transmission continues to occur in Haiti, with 25,423 confirmed cases of Plasmodium falciparum and 161,236 suspected infections reported in 2012. At low prevalence levels, passive surveillance measures, which rely primarily on reports from health systems, becomes less appropriate for capturing annual malaria incidence. To improve understanding of malaria transmission in Haiti, participants from the Ouest and Sud-Est departments were screened using a highly sensitive enzyme-linked immunosorbent assay (ELISA).
Methods: Between February and May 2013, samples were collected from four different sites including a rural community, two schools, and a clinic located in the Ouest and Sud-Est departments of Haiti. A total of 815 serum samples were screened for malaria antibodies using an indirect ELISA coated with vaccine candidates apical membrane antigen (AMA-1) and merozoite surface protein-1 (MSP-119). The classification of previous exposure was established by using a threshold value that fell three standard deviations above the mean absorbance for suspected seronegative population members (OD of 0.32 and 0.26 for AMA-1 and MSP-1, respectively). The observed seroprevalence values were used to fit a modified reverse catalytic model to yield estimates of seroconversion rates.
Results: Of the samples screened, 172 of 815 (21.1%) were AMA-1 positive, 179 of 759 (23.6%) were MSP-119 positive, and 247 of 815 (30.3%) were positive for either AMA-1 or MSP-1; indicating rates of previous infections between 21.1% and 30.3%. Not surprisingly, age was highly associated with the likelihood of previous infection (p-value <0.001). After stratification by age, the estimated seroconversion rate indicated that the annual malaria transmission in the Ouest and Sud-Est department is approximately 2.5% (95% CI SCR: 2.2%, 2.8%).
Conclusions: These findings suggest that despite the absence of sustained malaria control efforts in Haiti, transmission has remained relatively low over multiple decades. Elimination in Haiti appears to be feasible; however, surveillance must continue to be strengthened in order to respond to areas with high transmission and measure the impact of future interventions.