Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-Cancer Drug Testing in 3D Culture

Cell Mol Bioeng. 2014 Sep 1;7(3):344-354. doi: 10.1007/s12195-014-0349-4.

Abstract

Tumor spheroids are three-dimensional clusters of cancer cells that exhibit characteristics of poorly perfused tumors and hence present a relevant model for testing the efficacy of anti-cancer compounds. The use of spheroids for drug screening is hindered by technological complexities for high throughput generation of consistent size spheroids individually addressable by drug compounds. Here we present and optimize a simple spheroid technology based on the use of an aqueous two-phase system. Cancer cells confined in a drop of the denser aqueous dextran phase are robotically dispensed into a microwell containing the immersion aqueous polyethylene glycol phase. Cells remain within the drop and form a viable spheroid, without a need for any external stimuli. The size of resulting spheroids is sensitive to volume variations of dispensed drops from the air displacement pipetting head of a commercial liquid handling robot. Therefore, we parametrically optimize the process of dispensing of dextran phase drops. For a given cell density, this optimization reproducibly generates consistent size spheroids in standard 96-well plates. In addition, we evaluate the use of a commercial biochemical assay to examine cellular viability of cancer cell spheroids. Spheroids show a dose-dependent response to cisplatin similar to a monolayer culture. However unlike their two-dimensional counterpart, spheroids exhibit resistance to paclitaxel treatment. This technology, which uses only commercially-available reagents and equipment, can potentially expedite anti-cancer drug discovery. Although the use of robotics makes the ATPS spheroid technology particularly useful for drug screening applications, this approach is compatible with simpler liquid handling techniques such as manual micropipetting and offers a straightforward method of 3D cell culture in research laboratories.

Keywords: 3D (Three-Dimensional) Culture; Anti-Cancer Drug Screening; Aqueous Two-Phase System; High Throughput; Tumor Spheroid.