Planetary geochemical investigations using Raman and laser-induced breakdown spectroscopy

Appl Spectrosc. 2014;68(9):925-36. doi: 10.1366/13-07386.

Abstract

An integrated Raman spectroscopy and laser-induced breakdown spectroscopy (LIBS) instrument is a valuable geoanalytical tool for future planetary missions to Mars, Venus, and elsewhere. The ChemCam instrument operating on the Mars Curiosity rover includes a remote LIBS instrument. An integrated Raman-LIBS spectrometer (RLS) based on the ChemCam architecture could be used as a reconnaissance tool for other contact instruments as well as a primary science instrument capable of quantitative mineralogical and geochemical analyses. Replacing one of the ChemCam spectrometers with a miniature transmission spectrometer enables a Raman spectroscopy mineralogical analysis to be performed, complementing the LIBS chemical analysis while retaining an overall architecture resembling ChemCam. A prototype transmission spectrometer was used to record Raman spectra under both Martian and Venus conditions. Two different high-pressure and high-temperature cells were used to collect the Raman and LIBS spectra to simulate surface conditions on Venus. The resulting LIBS spectra were used to generate a limited partial least squares Venus calibration model for the major elements. These experiments demonstrate the utility and feasibility of a combined RLS instrument.