Statistical regularities in the environment guide perceptual processing; however, some predictions are bound to be more important than others. In this electroencephalogram (EEG) study, we test how task relevance influences the way predictions are learned from the statistics of visual input, and exploited for behavior. We developed a novel task in which participants are simply instructed to respond to a designated target stimulus embedded in a serial stream of non-target stimuli. Presentation probabilities were manipulated such that a designated target cue stimulus predicted the target onset with 70% validity. We also included a corresponding control contingency: a pre-designated control cue predicted a specific non-target stimulus with 70% validity. Participants were not informed about these contingencies. This design allowed us to examine the neural response to task-relevant predictive (cue) and predicted stimuli (target), relative to task-irrelevant predictive (control cue) and predicted stimuli (control non-target). The behavioral results confirmed that participants learned and exploited task-relevant predictions even when not explicitly defined. The EEG results further showed that target-relevant predictions are coded more strongly than statistically equivalent regularities between non-target stimuli. There was a robust modulation of the response for predicted targets associated with learning, enhancing the response to cued stimuli just after 200 ms post-stimulus in central and posterior electrodes, but no corresponding effects for predicted non-target stimuli. These effects of target prediction were preceded by a sustained frontal negativity following presentation of the predictive cue stimulus. These results show that task relevance critically influences how the brain extracts predictive structure from the environment, and exploits these regularities for optimized behavior.
Keywords: EEG; event-related potential; expectation; prediction; task-relevance.