Kinetochore biorientation in Saccharomyces cerevisiae requires a tightly folded conformation of the Ndc80 complex

Genetics. 2014 Dec;198(4):1483-93. doi: 10.1534/genetics.114.167775. Epub 2014 Sep 16.

Abstract

Accurate transmission of genetic material relies on the coupling of chromosomes to spindle microtubules by kinetochores. These linkages are regulated by the conserved Aurora B/Ipl1 kinase to ensure that sister chromatids are properly attached to spindle microtubules. Kinetochore-microtubule attachments require the essential Ndc80 complex, which contains two globular ends linked by large coiled-coil domains. In this study, we isolated a novel ndc80 mutant in Saccharomyces cerevisiae that contains mutations in the coiled-coil domain. This ndc80 mutant accumulates erroneous kinetochore-microtubule attachments, resulting in misalignment of kinetochores on the mitotic spindle. Genetic analyses with suppressors of the ndc80 mutant and in vitro cross-linking experiments suggest that the kinetochore misalignment in vivo stems from a defect in the ability of the Ndc80 complex to stably fold at a hinge in the coiled coil. Previous studies proposed that the Ndc80 complex can exist in multiple conformations: elongated during metaphase and bent during anaphase. However, the distinct functions of individual conformations in vivo are unknown. Here, our analysis revealed a tightly folded conformation of the Ndc80 complex that is likely required early in mitosis. This conformation is mediated by a direct, intracomplex interaction and involves a greater degree of folding than the bent form of the complex at anaphase. Furthermore, our results suggest that this conformation is functionally important in vivo for efficient error correction by Aurora B/Ipl1 and, consequently, to ensure proper kinetochore alignment early in mitosis.

Keywords: Hec1; linker scanning; mass spectrometry; optical trap; syntelic.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alleles
  • Amino Acid Sequence
  • Amino Acid Substitution
  • Cell Cycle Checkpoints / genetics
  • Kinetochores / chemistry
  • Kinetochores / metabolism*
  • Microtubules / metabolism
  • Mitosis
  • Models, Biological
  • Molecular Sequence Data
  • Mutation
  • Nuclear Proteins / chemistry*
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Protein Binding
  • Protein Conformation
  • Protein Folding
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Sequence Alignment

Substances

  • NDC80 protein, S cerevisiae
  • Nuclear Proteins
  • Saccharomyces cerevisiae Proteins