The possible applicability of (un)targeted metabolomics (volatile metabolites) for revealing taxonomic/evolutionary relationships among Senecio L. species (Asteraceae; tribe Senecioneae) was explored. Essential-oil compositional data of selected Senecio/Senecioneae/Asteraceae taxa (93 samples in total) were mutually compared by means of multivariate statistical analysis (MVA), i.e., agglomerative hierarchical clustering and principal component analysis. The MVA input data set included the very first compositional data on the essential oil extracted from the aerial parts of S. viscosus L. as well as on four different Serbian populations of S. vernalis Waldst. & Kit. (oils from aerial parts and roots; eight samples in total). This metabolomic screening of Senecio/Senecioneae/Asteraceae species (herein presented results and data from the literature) pointed to short-chain alk-1-enes (e.g., oct-1-ene, non-1-ene, and undec-1-ene), with up to now restricted general occurrence in Plantae, as characteristic chemotaxonomic markers/targets for future metabolomic studies of Senecio/Senecioneae taxa. The MVA additionally showed that the evolution of the terpene metabolism (volatile mono- and sesquiterpenoids) within the Asteraceae tribe Senecioneae was not genera specific. However, the MVA did confirm plant-organ specific production/accumulation of volatiles within S. vernalis and suggested the existence of at least two volatile chemotypes for this species.
Keywords: Chemotaxonomy; Essential oils; Metabolomics; Multivariate statistical analysis (MVA); Senecio.
Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.