The effect of prior exercise intensity on oxygen uptake kinetics during high-intensity running exercise in trained subjects

Eur J Appl Physiol. 2015 Jan;115(1):147-56. doi: 10.1007/s00421-014-3000-0. Epub 2014 Sep 21.

Abstract

Purpose: The aim of this study was to compare the effects of two different kinds of prior exercise protocols [continuous exercise (CE) versus intermittent repeated sprint (IRS)] on oxygen uptake (VO2) kinetics parameters during high-intensity running.

Methods: Thirteen male amateur futsal players (age 22.8 ± 6.1 years; mass 76.0 ± 10.2 kg; height 178.7 ± 6.6 cm; VO2max 58.1 ± 4.5 mL kg(-1) min(-1)) performed a maximal incremental running test for the determination of the gas exchange threshold (GET) and maximal VO2 (VO2max). On two different days, the subjects completed a 6-min bout of high-intensity running (50 % ∆) on a treadmill that was 6-min after (1) an identical bout of high-intensity exercise (from control to CE), and (2) a protocol of IRS (6 × 40 m).

Result: We found significant differences between CE and IRS for the blood lactate concentration ([La]; 6.1 versus 10.7 mmol L(-1), respectively), VO2 baseline (0.74 versus 0.93 L min(-1), respectively) and the heart rate (HR; 102 versus 124 bpm, respectively) before the onset of high-intensity exercise. However, both prior CE and prior IRS significantly increased the absolute primary VO2 amplitude (3.77 and 3.79 L min(-1), respectively, versus control 3.54 L min(-1)), reduced the amplitude of the VO2 slow component (0.26 and 0.21 L min(-1), respectively, versus control 0.50 L min(-1)), and decreased the mean response time (MRT; 28.9 and 28.0 s, respectively, versus control 36.9 s) during subsequent bouts.

Conclusion: This study showed that different protocols and intensities of prior exercise trigger similar effects on VO2 kinetics during high-intensity running.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Athletes
  • Humans
  • Male
  • Oxygen Consumption*
  • Running / classification
  • Running / physiology*