We tested whether mirror visual feedback (MVF) from a moving hand induced high gamma oscillation (HGO) response in the hemisphere contralateral to the mirror and ipsilateral to the self-paced movement. MEG was recorded in 14 subjects under three conditions: bilateral synchronous movements of both index fingers (BILATERAL), movements of the right hand index finger while observing the immobile left index finger (NOMIRROR), and movements of the right hand index finger while observing its mirror reflection (MIRROR). The right hemispheric spatiospectral regions of interests (ROIs) in the sensor space, sensitive to bilateral movements, were found by statistical comparison of the BILATERAL spectral responses to baseline. For these ROIs, the post-movement HGO responses were compared between the MIRROR and NOMIRROR conditions. We found that MVF from the moving hand, similarly to the real movements of the opposite hand, induced HGOs (55-85Hz) in the sensorimotor cortex. This MVF effect was frequency-specific and did not spread to oscillations in other frequency bands. This is the first study demonstrating movement-related HGO induced by MVF from the moving hand in the absence of proprioceptive feedback signaling. Our findings support the hypothesis that MVF can trigger the feedback-based control processes specifically associated with perception of one's own movements.
Keywords: Hand movements; High gamma somatotopy; MEG; Mirror visual feedback; Sensorimotor cortex.
Copyright © 2014. Published by Elsevier Inc.