Dynamic spatiotemporal brain analyses using high performance electrical neuroimaging: theoretical framework and validation

J Neurosci Methods. 2014 Dec 30:238:11-34. doi: 10.1016/j.jneumeth.2014.09.009. Epub 2014 Sep 20.

Abstract

Background: Since Berger's first EEG recordings in 1929, several techniques, initially developed for investigating periodic processes, have been applied to study non-periodic event-related brain state dynamics.

New method: We provide a theoretical comparison of the two approaches and present a new suite of data-driven analytic tools for the specific identification of the brain microstates in high-density event-related brain potentials (ERPs). This suite includes four different analytic methods. We validated this approach through a series of theoretical simulations and an empirical investigation of a basic visual paradigm, the reversal checkerboard task.

Results: Results indicate that the present suite of data-intensive analytic techniques, improves the spatiotemporal information one can garner about non-periodic brain microstates from high-density electrical neuroimaging data.

Comparison with existing method(s): Compared to the existing methods (such as those based on k-clustering methods), the current micro-segmentation approach offers several advantages, including the data-driven (automatic) detection of non-periodic quasi-stable brain states.

Conclusion: This suite of quantitative methods allows the automatic detection of event-related changes in the global pattern of brain activity, putatively reflecting changes in the underlying neural locus for information processing in the brain, and event-related changes in overall brain activation. In addition, within-subject and between-subject bootstrapping procedures provide a quantitative means of investigating how robust are the results of the micro-segmentation.

Keywords: Bootstrapping; Brain modeling; Cosine distance metric; Data-driven; Electrical neuroimaging; Electrodynamics; Electroencephalography; Event-related potentials; Image segmentation; Mean square error methods; Open source; Root mean square; Topographic analysis.

Publication types

  • Validation Study

MeSH terms

  • Algorithms
  • Brain / physiology*
  • Cluster Analysis
  • Computer Simulation
  • Electroencephalography / methods*
  • Evoked Potentials*
  • Female
  • Humans
  • Male
  • Models, Neurological
  • Monte Carlo Method
  • Signal Processing, Computer-Assisted
  • Visual Perception / physiology
  • Young Adult