The calmodulin binding domain of the plasma membrane Ca2+ pump interacts both with calmodulin and with another part of the pump

J Biol Chem. 1989 Jul 25;264(21):12313-21.

Abstract

Synthetic peptides corresponding to the calmodulin-binding domain of the human erythrocyte Ca2+ pump were prepared representing residues 2-29 (C28W), 2-21 (C20W), 2-16 (C15W), and 16-29 (C14) of the sequence (James, P., Maeda, M., Fisher, R., Verma, A. K., Krebs, J., Penniston, J. T., and Carafoli, E. (1988) J. Biol. Chem. 263, 2905-2910). Peptides C28W, C20W, and C15W bound to calmodulin with an apparent 1:1 stoichiometry in the presence of Ca2+ and inhibited the activation of the Ca2+ pump by calmodulin, while C14 was ineffective. Substituting tyrosine (C28Y) or alanine (C28A) for the tryptophan residue lowered the affinity for calmodulin. The estimated Kd values for the calmodulin-peptide complexes were 0.1 nM for C28W, 5-15 nM for C20W, C28Y, and C28A, and 700-1700 nM for C15W. The Ca2+ pump in inside-out erythrocyte membrane vesicles was activated by proteolytic removal of the endogenous calmodulin-binding domain. Addition of C20W or C28W then inhibited calmodulin-independent Ca2+ transport, while a calmodulin-binding peptide from another enzyme had no effect. The inhibition of the pump by C20W was purely competitive with Ca2+, while C28W decreased the Vmax and increased the K1/2 for Ca2+, restoring the pump activity nearly to its low basal level. The results suggest that a calmodulin-binding peptide from any enzyme has two kinds of specificity: it shares with peptides from other enzymes the ability to bind to calmodulin, but only it has the specificity to interact with its own (proteolytically activated) enzyme.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Calcium / blood
  • Calcium-Transporting ATPases / blood*
  • Calcium-Transporting ATPases / isolation & purification
  • Calmodulin / metabolism*
  • Erythrocyte Membrane / enzymology*
  • Humans
  • Kinetics
  • Models, Biological
  • Molecular Sequence Data
  • Peptides / metabolism
  • Protein Binding

Substances

  • Calmodulin
  • Peptides
  • Calcium-Transporting ATPases
  • Calcium