Due to the importance of the identification of chemotherapy outcome prognostic factors, we attempted to establish the potential of oxidative stress/DNA damage parameters such as prognostic markers. The aim of the study was to determine whether platinum derivative-based chemotherapy in cancer patients (n = 66) is responsible for systemic oxidatively damaged DNA and whether damage biomarkers, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and the modified base 8-oxo-7,8-dihydroguanine (8-oxo-Gua), in urine and DNA may be used as a prognostic factor for the outcome of chemotherapy. All the aforementioned modifications were analyzed using techniques involving high-performance liquid chromatography/electrochemical detection (HPLC/EC) or HPLC/gas chromatography-mass spectrometry (GC-MS). Among all the analyzed parameters, the significantly decreased levels of 8-oxo-Gua in urine collected from a subgroup of patients 24 h after the first infusion of the drug, as compared with the baseline levels, correlated with a significantly longer overall survival (OS) (60 months after therapy) than in the subgroup without any decrease of this parameter after therapy (median OS = 24 months, p = 0.007). Moreover, a significantly longer OS was also observed in a group with increased urine levels of 8-oxo-dG after chemotherapy (38.6 vs. 20.5 months, p = 0.03). The results of our study suggest that patients with decreased 8-oxo-Gua levels and increased 8-oxo-dG levels in urine 24 h after the first dose should be considered as better responders to the administered chemotherapy, with a lower risk of death. The conclusion may permit the use of these parameters as markers for predicting the clinical outcome of platinum derivative-based chemotherapy.