Motivation: In mammalian cells, many genes are silenced by genome methylation. DNA methyltransferases and polycomb repressive complexes, which both lack sequence-specific DNA-binding motifs, are recruited by long non-coding RNA (lncRNA) to specific genomic sites to methylate DNA and chromatin. Increasing evidence indicates that many lncRNAs contain DNA-binding motifs that can bind to DNA by forming RNA:DNA triplexes. The identification of lncRNA DNA-binding motifs and binding sites is essential for deciphering lncRNA functions and correct and erroneous genome methylation; however, such identification is challenging because lncRNAs may contain thousands of nucleotides. No computational analysis of typical lncRNAs has been reported. Here, we report a computational method and program (LongTarget) to predict lncRNA DNA-binding motifs and binding sites. We used this program to analyse multiple antisense lncRNAs, including those that control well-known imprinting clusters, and obtained results agreeing with experimental observations and epigenetic marks. These results suggest that it is feasible to predict many lncRNA DNA-binding motifs and binding sites genome-wide.
Availability and implementation: Website of LongTarget: lncrna.smu.edu.cn, or contact: [email protected].
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].